
Keebo’s Complete Guide to
Optimizing Snowflake’s Cost
andQuery Performance
ASurveyofManualandAutomatedApproaches

Introduction 2

Which Optimizations to Use 4

When to Use Manual Optimizations 4

When to Use Automated Optimizations 5

Manual Approach 7

Ingestion Optimization 7

Query Optimization 7

Schema Optimization 12

Warehouse Optimization 17

Keebo’s Automated Approach 26

What Is Keebo? 26

Keebo’s Architecture 27

How to use Keebo? 28

Copyright © 2024 by Keebo,inc.

Introduction
Snowflake is one of the most popular cloud-based data warehouses. It went
public in 2020 with the largest software IPO to date. Snowflake offers a secure
and scalable database engine with a unique architecture that decouples
compute and storage resources, allowing customers to pay only for the
resources they need and use. Unlike traditional (on-prem) data warehouses,
Snowflake provides a flexible and fully managed data analytics solution
(Software-as-a-Service).

However, Snowflake’s pay-as-you-use pricing model and the fact that it is a
shared service across the entire organization mean costs can add up
quickly. As data volume and computation needs grow, Snowflake costs will
too – sometimes astronomically. Users can create automated alerts for
when usage exceeds a certain budget, but it’s not a long-term solution as
organizations still need to meet their growing needs. Ultimately, proper
optimization of your Snowflake is the only viable route to preserving
resources as you scale.

OptimizingSnowflake IsaChallenge,butCrucial

Performance optimization is always a challenge, but with cloud-based data
warehouses (and Snowflake is no exception) it is even more challenging for
several reasons. First, compared to traditional data warehouses that have
matured over decades, cloud data warehouses are newer offerings focused
on ease-of-use by average users, rather than advanced database engineers

who are accustomed to fine-grained tuning knobs. Second, cloud data
warehouses are adopted by more modern and data-driven companies.
Their user base is more diverse with varying levels of database proficiency.
This has increased the chances of poorly written queries, sub-optimal
schemas, and inefficient data ingestion patterns. Finally, the ease of scaling
up/out a cloud data warehouse has created a shortcut for solving
performance problems, causing companies to overlook proper database
optimizations at the cost of paying additional compute costs.

Cost optimization is even more challenging when it comes to Snowflake. The
reason is Snowflake’s pricing model. The overall costs depend on the
customer’s usage of storage, virtual warehouses (a.k.a. compute), cloud
services, and serverless features. However, for most customers, the dominant
factor is the compute cost. Simply put, you are charged a certain number of
credits (depending on the size of your warehouse) for every second the
warehouse is running. Because of this pricing model, optimizing query
performance alone may not be sufficient for reducing the overall compute
costs.

Nonetheless, Snowflake is one of the most popular cloud data warehouses in
the world. Investing in performance and cost optimization will determine your
long-term success on the platform. This is critical for not only improving your
user experience and adoption of data-driven initiatives across your
organization but also for freeing up engineering and financial resources. With
optimization, you can funnel those freed up resources into your core business
rather than managing your cloud data warehouse.

Since compute costs are at least an order of magnitude greater than storage
and cloud services costs for most customers, the rest of this document
focuses primarily on optimizing compute costs.

We will present two approaches to optimization: manual and automated. To
decide which of these two options is a better fit for your organization, you can
use the following guidelines.

WhichOptimizationsToUse

WhentoUseManualOptimizations
Manual optimizations include data ingestion optimizations, query
optimizations, schema optimizations, and warehouse optimizations.

For data ingestion, manual optimizations are almost always effective. This is
because data ingestion is often overseen by a centralized team of database
experts, and ingestion pipelines do not change too frequently in most
organizations. As a result, once the input files, formats, and scripts are
optimized, there is little need for ongoing monitoring or training of end users.

When it comes to optimizing the schema, queries, or the warehouse itself,
manual optimizations are most effective for small workloads and
organizations where there are fewer users and queries. While a great start,
manual optimizations are not scalable as they are time-consuming, hard to
implement, and most importantly, sub-optimal, as we will explain next.

WhentoUseAutomatedOptimizations
As mentioned above, manual optimizations are time-consuming,
challenging, and less optimal with larger and more complex workloads for
several reasons:

1. Most optimizations are a tradeoff that requires a careful analysis
of competing factors. One has to carefully weigh the positive and
negative impact of any changes while accounting for a large number
of complex parameters in the query workload and usage patterns.
Rigorously quantifying the impact of each decision can take hours of
work from highly skilled engineers. As a result, most rely on simplified
rules of thumb, which lead to decisions that are directionally helpful but
not necessarily optimal.

2. In most organizations, queries are written by a wide range of
users. Even schema changes are not always initiated by a centralized
department. This makes it challenging to implement company-wide
query or schema optimizations, as it requires training and cooperation
of many users with different levels of SQL proficiency, continuous
monitoring of queries and schema changes, and enforcing
company-wide policies.

3. Workloads and databases are living objects. What’s optimal
today may no longer be optimal next month or after the next software
release. In that sense, performance improvement projects are almost a
never-ending project. If you invest in manual query optimization, make
sure you carefully weigh the potential performance benefits against

the cost of expensive engineering resources that can otherwise be
spent in other areas with more impact.

4. Even the most skilled DBAs are still humans: they make mistakes
and they get tired and overwhelmed. If you have a large workload with
hundreds of thousands of queries, they can only focus on a small
subset of them. Even if they manage to magically speed up 1000 of
your slowest queries, it may only have a small impact on your overall
compute costs. The reason is Snowflake’s pricing model charges you
based on the number of seconds the warehouse is running. This means
speeding up your slowest queries will only reduce your overall cost
insofar as it allows for 1) scaling down an unnecessarily large
warehouse that was only needed for those slow queries, or 2) reducing
the frequency of Snowflake’s auto-scaling of your multi-cluster
warehouse due to fewer resources being consumed by slow queries.

The automated approach is much more effective for larger workloads
because it rigorously accounts for different parameters across hundreds of
thousands of queries, thus guaranteeing optimal performance at the lowest
cost. Unlike the manual optimizations performed by humans, the automated
approach is not error-prone. It is also more scalable, as it does not require
hours of effort from highly skilled engineers and DBAs. More importantly, the
automated approach can continuously monitor your warehouse and adjust
to your workload in real-time. This ensures optimal performance and the
lowest costs at all times, even when your workload changes, new
applications are introduced, or usage patterns change.

ManualApproach

1. IngestionOptimization
Frequent or continuous data ingestion is one of the most expensive
operations when it comes to Snowflake. The reason is that Snowflake
bills by the number of seconds the warehouse is up and running
regardless of what percentage of the warehouse resources are being
used.

2. QueryOptimization
Inefficient or poorly written queries are the biggest factor affecting
Snowflake’s compute costs but unfortunately the hardest to fix
manually. The reason is simply that a very diverse set of users across
the organization use your database. These users have varying degrees
of SQL proficiency. Educating hundreds or thousands of users with
different backgrounds is a challenging task. Most users do not have
any interest in becoming SQL experts. A common approach taken by
most organizations is to have a small team of highly experienced DBAs
constantly monitor the query logs. They identify the lowest-performing
queries and intervene to optimize or rewrite them.

This approach is not very effective for two obvious reasons.

1. First, consider a small or medium-sized organization issuing 100K
queries a month (larger organizations might issue tens of millions).
Even optimizing the slowest 1% of queries will mean manually
inspecting 1000 queries --- a daunting task to say the least!

2. Second, optimizing a small percentage of queries (even if they are the
slowest ones) does not necessarily have a big impact on credit usage,
again due to Snowflake’s billing model. As long as there are other
queries running in the warehouse, regardless of whether they are slow
or fast, Snowflake will be charging you a certain number of credits
depending on the size of your warehouse. This is not to say that
optimizing your slowest queries will not affect your credit usage. It does,
but indirectly and only to some extent. By speeding up your slowest
queries, you may be able to: 1) scale down an unnecessarily large
warehouse that was overprovisioned due to users’ performance
complaints, 2) reduce the likelihood of triggering Snowflake’s
auto-scaling if you are using a multi-cluster warehouse.

With these disclaimers, below are some of the common mistakes that are
easiest to correct and will impact query performance and cost:

● Avoid using SELECT * queries when you can. This is because
Snowflake is a column-store, and retrieving a subset of columns will
drastically improve performance if your table has a lot of columns.

● Avoid nested queries as much as possible. Query optimizers are not
very effective in optimizing nested queries. Here’s a simple
pseudo-example of an unnecessarily nested query:

SELECT A FROM T T1

WHERE T1.B > ANY (SELECT T2.B FROM T T2 WHERE T1.A =T2.A);

This query can easily be rewritten as:

SELECT DISTINCT A FROM T T1 JOIN T T2 ON T1.A =T2.A

WHERE T1.B > T2.B;

● Use LEFT JOIN instead of nested queries with IN or EXISTS whenever
possible. Here’s a simple pseudo-example of a query that’s using the
latter unnecessarily:

SELECT A FROM T1

WHERE T1.B NOT IN (SELECT T2.B FROM T2 WHERE T1.B =T2.B);

This query can easily be rewritten as:

SELECT A FROM T1 LEFT JOIN T2 ON T1.B = T2.B

WHERE T2.B IS NULL;

● Avoid using inequality joins whenever possible, as they are one of the
hardest queries to optimize by your data warehouse. Here is a simple
pseudo-example:

SELECT T1.A, COUNT(DISTINCT T2.A)

FROM T T1 JOIN T T2 ON T1.A <= T2.A

GROUP BY T1.key, T1.A ORDER BY T1.A DESC;

The following query achieves the same goal but more efficiently:

SELECT A, DENSE_RANK() OVER (ORDER BY A DESC) FROM T

● When looking for top-K results, where K is a small constant, using MIN

(or MAX) is more efficient than RANK() as the latter requires sorting
whereas the former can be processed with a simple scan and often
benefits from partition-based pruning:

SELECTmax(A) AS secondA FROM

(SELECT RANK() OVER (ORDER BY A DESC) AS A_rank, A FROM T)

WHERE A_rank =2;

The following query achieves the same goal but more efficiently:

SELECT MAX(A) AS secondA

FROM T WHERE A < (SELECT MAX(A) FROM T);

● Avoid applying complex functions and expressions to your join key. In
its worst case, a complex join condition will lead to nested loop join. If
you need a complex expression as your join key, create intermediate
results first before performing a join. Equality joins with simpler
expressions allow your query optimizer to choose from a wider range of
efficient join implementations. The difference between a join that is
internally executed as a hash- or merge-join versus one that is
executed as a nested loop can be two orders of magnitude (a few
seconds versus tens of minutes).

● Try using UNION ALL instead of UNION whenever possible. In other
words, use UNION only if you really need it. UNION ALL keeps all records,
whereas UNION has to check for duplicates and only return the unique
records. The latter requires extra computation (typically implemented
with a sort). What we have observed is that in many cases users are

not entirely sure if the result will have duplicates, so they use UNION
simply as a “safety mechanism” in their query. Familiarizing yourself
with the integrity constraints in your schema and investing in your data
quality eliminate the need for extra computations later on.

● If you are joining tables, try to use ANSI joins as much as possible. They
are more likely to be properly optimized by the query optimizer. In other
words, instead of:

FROM T1, T2 WHERE T1.A = T2.B

use the following:

FROM T1 JOIN T2 on T1.A = T2.B

3. SchemaOptimization
There are three types of schema in a relational database: physical,
logical (a.k.a. conceptual), and external (a.k.a. view) schemas. A
proper database design involves making the right decisions based on
the business requirements and the data semantics at all three levels of
the schema. In fact, all three schemas can directly impact both data
ingestion and query performance, thereby affecting your Snowflake’s
compute usage.

● Views come with many benefits and are often created for security,
logical data independence, or encoding business logic. They also
significantly improve query readability and reduce the likelihood of
mistakes in query logic. However, an overlooked benefit of views in
a large organization is that they reduce the likelihood of

https://en.wikipedia.org/wiki/Data_independence

less-experienced users writing inefficient SQL queries. Similar to
materialized views (see below), if the DBA team can identify
expensive and common building blocks and turn them into
efficiently-written views, the less-experienced users in the
organization who are more likely to write inefficient queries can
simply reuse those views. This usually leads to better overall
performance.

Unfortunately, like most beneficial things, views can also be a
double-edged sword. Most databases inline the view definition in
the queries that reference them, and then pass them to the query
optimizer. This means, with a deep hierarchy of complex views,
Snowflake’s query optimizer is now effectively faced with a highly
nested query which is much harder to optimize. Materialized views,
when applicable (see below), can prevent some of those problems.

● If you are using Snowflake’s enterprise or higher editions, you have
access to materialized views. Using materialized views can
significantly improve performance if you can identify common
building blocks of your queries that are expensive, but may or may
not reduce your overall credit usage. This is because Snowflake will
pre-compute those building blocks in advance, and thus queries
that can use those materialized views are processed faster when
they arrive. However, whether materialized views reduce or increase
your overall cost depends on the percentage of your queries that
benefit from those materialized views versus the frequency at
which your underlying data changes causing Snowflake to
recompute your materialized views on your behalf. In general,
identifying a small set of highly effective materialized views that

benefits the largest number of your slow queries and requires the
least amount of update overhead can be a daunting task when
done manually. An automated approach is much more effective in
analyzing the common building blocks across hundreds of
thousands of queries.

● Clustering keys are part of your physical schema that have the
largest impact on performance when it comes to Snowflake. Each
database employs a different data partitioning strategy. Snowflake
uses micro-partitions, which are contiguous units of storage,
each containing 50-500 MB of uncompressed data. Groups of rows
in each table are mapped into individual micro-partitions,
compressed, and organized in a columnar fashion. When the rows
in each micro-partition are clustered according to some popular
attributes (“clustering key”), Snowflake can efficiently skip the
irrelevant micro-partitions when processing queries that reference
your clustering key. This is quite beneficial for extremely large
tables. By default, Snowflake auto clusters your rows according to
their insertion order. Because insertion order is often correlated with
dates, and dates are a popular filtering condition, this default
clustering works quite well in many cases. You can use Snowflake’s
SYSTEM$CLUSTERING_DEPTH system function to see how effective
your micro-partitions are in terms of a specified set of columns. It
returns the average depth as an indicator of how much your
micro-partitions overlap. The lower this number, the less overlap,
the more pruning opportunities, and the better your query
performance when filtering on those columns. There are at least
two situations in which you should consider using Snowflake’s auto
clustering or specifying a user-defined clustering key:

https://docs.snowflake.com/en/user-guide/tables-clustering-micropartitions.html
https://docs.snowflake.com/en/sql-reference/functions/system_clustering_depth.html
https://docs.snowflake.com/en/user-guide/tables-auto-reclustering.html
https://docs.snowflake.com/en/user-guide/tables-auto-reclustering.html

a. When you have too many DML statements after your initial
data load, your clustering may lose its effectiveness over
time: more overlap means fewer pruning opportunities. This
can be determined using the above mentioned system
function and observing a higher average depth. Snowflake
used to allow for manual reclustering in the past but it was
expensive, and users had to decide whether performing it
outweighed the additional costs. Starting May 2020,
Snowflake no longer allows for manual reclustering. Instead,
all tables enjoy auto clustering by default, which means
Snowflake determines when it is worth reclustering a table.
You can check the costs incurred by auto clustering,
and suspend it if you want. However, we do not recommend
that, as excessive auto clustering costs mean your DML
operations are in conflict with your current clustering key.
You should consider changing your clustering key instead
(see below).

b. Determining an effective clustering key is essential for good
query performance on massive tables. To choose the best
clustering key, you should choose a subset of columns (or
expressions) based on the following considerations:

i. The cardinality of the columns you choose should
neither be too small nor too large. For example,
clustering on a column with only 3 distinct values
means, in the best case scenario, a query with an
equality predicate on that column will run 3x faster
(skipping 66% of your data), whereas clustering on a
column with 1000 distinct values will mean that an

https://docs.snowflake.com/en/user-guide/tables-auto-reclustering.html#viewing-automatic-clustering-billing

equality predicate on that column can potentially run
1000X faster. Likewise, a column with extremely high
cardinality (e.g., a primary key or timestamp) is not a
good candidate for a clustering key either. The
reason is that the cost of maintaining a
high-cardinality clustering key outweighs the
performance benefits of such a clustering key. The
best strategy for clustering on high-cardinality
columns is to instead use an expression as the
clustering key by applying a function that maps the
column values into fewer distinct values. For example,
you can use to_date(A) when A is a timestamp or
use trunc(A) when A is a number to truncate it to
fewer significant digits, e.g., trunc(123456789, -5).

ii. Columns that appear frequently in range or equality
predicates in WHERE clauses are the best candidates.
The second-best candidates are columns that are
used as join keys. For example, if you have a common
join pattern:

FROM T1 JOIN T2 ON T1.A = T2.B

A and B may be great clustering keys for T1 and T2,
respectively. Finally, columns appearing in your
DISTINCT, ORDER BY and GROUP BY clauses can be
the next set of good candidates as part of the
clustering key, as these clauses often lead a sorting
operation too.

iii. You can use multiple columns as your clustering key.
For instance, if you have a lot of queries searching by

date and region, you can define your clustering key
as the combination of date and region. Snowflake
recommends choosing a maximum of 3-4 columns
(or expressions) for your clustering key. When you
cluster on too many columns, your effective
cardinality can be as large as the multiplication of
the cardinalities of the individual columns (assuming
no correlation).

iv. When using multi-column clusters, the ordering
matters. Assuming no correlation, you want to specify
the columns in CLUSTER BY clause from the lowest
cardinality to the highest. This leads to the largest
speedup.

4. WarehouseOptimization
As previously mentioned, data ingestion can be an expensive
operation due to Snowflake’s billing model.

● To minimize your credit usage, you can take the following steps
depending on whether you are using a dedicated warehouse for your
data ingestion or sharing one with other applications:

a. If you use a dedicated warehouse for data ingestion, you can
explicitly start it right before the data load process starts and
stop it immediately after. However, if you have enabled
auto-resume for your warehouse and auto-suspense is set to
a very small period (say 5 minutes or less), this is unnecessary
because Snowflake does it automatically. However, in that
case, you need to make sure that no other applications or

queries will mistakenly hit your warehouse after the load
process completes. If it happens, they will resume (i.e., wake
up) your warehouse and you will be paying again until the
auto suspense kicks in.

b. If you are sharing the warehouse with other applications, you
can scale up your warehouse right before the data load and
scale it back down right after. These steps help minimize credit
usage.

● One of the most important decisions that directly affect your compute
cost is rightsizing your Snowflake instance type, which is referred to as
warehouse size in Snowflake Terminology. Snowflake offers the
following instance types currently, each costing a different number of
credits per hour. Although Snowflake bills by the second, each time a
warehouse wakes up (i.e., resumes), Snowflake charges a minimum of
60 seconds.

WAREHOUSE SIZE CREDITS/HOUR

X-SMALL 1

SMALL 2

MEDIUM 4

LARGE 8

X-LARGE 16

2X-LARGE 32

3X-LARGE 64

4X-LARGE 128

5X-LARGE 256

6X-LARGE 512

If you are using Snowflake’s Enterprise edition or higher, you also have
access to multi-cluster warehouses, a feature that allows for
automated scale out. Regardless of your warehouse size, you can set a
minimum and a maximum number of clusters along with a scaling
policy that allows Snowflake to automatically start additional clusters
on your behalf (up to the maximum specified) when the workload
exceeds the current warehouse resources and automatically suspend
them (down to the minimum specified) when the additional
warehouses are no longer needed.

Increasing the size of your warehouse, say from Large to X-Large, is
called “scaling up”. Increasing the number of clusters, say from a
2-cluster warehouse to a 3-cluster warehouse, is called “scaling out”.
In theory, because of Snowflake’s pricing, the credit cost of running an
X-Large warehouse for an entire hour is no different than running a
Large warehouse with 2 clusters both running for the entire hour. In
practice, however, there is a world of difference both in terms of
performance and cost. Below is our recommendation of when to use
which one.

● First, pick a warehouse size that can efficiently process “most” of your
queries. Provisioning a warehouse for your slowest query is too
expensive, as it would mean most of the time you will be paying for
underutilized compute resources. If you expect heavy queries (e.g., a
daily ingestion task) during a specific time window, you can scale up
your warehouse size programmatically only for the duration of the

heavy queries. If your heavy queries are scattered throughout the day,
it is much harder to achieve both good performance for those queries
and remain cost-efficient. You need to rely on the automated approach

in those scenarios.

● If you have a lot of queries hitting your data warehouse concurrently,
you are better off going with a multi-cluster. This is because, almost
always, the number of queries fluctuates during different hours of the
day. A multi-cluster will allow for significant savings by turning off the
clusters during times when your load goes down and bring them back
up when you hit your peak load.

● As a rule of thumb, scaling up helps when you have slow queries but
scaling out helps when you have a lot of concurrent queries. The most
common mistake we observe is relying on TOTAL_ELAPSED_TIME to
determine whether you have slow queries. The TOTAL_ELAPSED_TIME

can be misleading as it is typically the symptom and not the cause. To
find out the root cause, you need to look at the following fields in the
QUERY_HISTORY view:

a. COMPILATION_TIME: a large compilation time is typically
indicative of overly complicated queries, e.g., highly nested
queries with a lot of UNION clauses.

b. EXECUTION_TIME: a large execution time means the query is
an expensive one. A large number of queries with large
execution times is a signal that you need to either optimize
those queries or scale up to a larger warehouse.

c. QUEUED_PROVISIONING_TIME: a large number of queries with a
non-zero queued provisioning time means the cluster is being

suspended too frequently. This means you need to increase
your “Auto Suspend” interval.

d. QUEUED_OVERLOAD_TIME: This is a crucial piece of information
to look at. Oftentimes, large TOTAL_ELAPSED_TIME is simply due
to QUEUED_OVERLOAD_TIME rather than a large
EXECUTION_TIME. Whenever there are a lot of queries with
considerable QUEUED_OVERLOAD_TIME, it means a lot of faster
queries are queued up behind slower queries. To address this,
you should either scale out (by increasing the number of
clusters in your multi-cluster warehouse) or separate the slow
and fast queries into separate warehouses. Both solutions
address your performance problems at the cost of increasing
your compute cost, but the latter (separation of the
warehouses) is almost always a more expensive approach.

● There are several great reasons for creating separate warehouses for
your different applications, users, and queries. Part of Snowflake’s
popularity is that it makes creating separate warehouses accessing
the same data extremely simple. For example, you may separate your
workloads for security reasons, to shield your users from heavy-duty
tasks (e.g., data ingestion), or even allocating different budgets to
each department (e.g., ease of accounting). What you and your
organization need to know is that separating your workload into
multiple warehouseswill almost always increase your compute costs.
The reason is simple. Snowflake bills you by the number of seconds
that your warehouse was running multiplied by the credits/second for
that warehouse size. To illustrate why separating your workload into
multiple clusters can drastically reduce your costs, consider the
following toy example.

Assume you have a query Q1 arriving at 9:00 am that runs for 60
seconds in your Large warehouse. You have a second query Q2 arriving
at 9:01 am that runs for 120 seconds in the same warehouse. Even if you
have aggressively set your auto suspend to be 3 minutes, you will be
paying for your cluster running from 9 am to 9:06 am. A Large
warehouse costs 8 credits/hour, so you will be paying 8*6/60=0.8
credits for these two queries sharing a Large warehouse. Now let’s
compare this to a situation where you have separated your workload
into two warehouses, W1 and W2, where Q1 is served by W1 and Q2 is
served by W2. To deliver the same performance as before, W1 and W2
need to be Large warehouses too. Assuming queries arrive at the same
time for simplifying our analysis, now you will be paying for W1 running
from 9:00 to 9:04 (4 mins) and for W2 running from 9:01 to 9:06 (5
mins). This means in total you will be paying for running Large
warehouses for 9 mins, namely 8*9/60=1.2 credits. The only way to
keep the costs comparable in this example is to downsize W1 and W2 to
Medium warehouses, which will mean roughly doubling the latency of
Q1 and Q2!

The above example is contrived, but hopefully, it illustrates why
Snowflake’s pricing model makes it expensive to separate workloads.
This is not to say that the entire organization should be sharing a single
warehouse. In fact, there are many good reasons for using multiple
warehouses for different departments. However, these decisions must
be made with the full understanding that they will come at a financial
cost. Like most of the other optimizations described here, analyzing if
and how to scale up or out requires a lot of investigative work.

In our case studies, analyzing queries and rightsizing decisions can
take significant effort from the database team. In the end, because of

the sheer complexity of analyzing hundreds of thousands of queries
and all the factors that need to be accounted for, decisions on size and
number of warehouses you use for each application is never going to
be “optimal”. In other words, you are always going to leave money on
the table. However, even running some basic experiments might help
you directionally with improving your Snowflake setup. If you really
want to retain an optimal Snowflake setup at all times, you need to rely
on the automated solution

● Choose Snowflake’s auto-suspend parameter carefully. This
parameter allows for automatically suspending a warehouse
whenever there is no activity for a specified period. You can also
enable auto resumption which means your warehouse is automatically
resumed as soon as a new query arrives. The auto suspension can help
reduce your compute bill, but if the interval is not chosen carefully can
have the opposite impact. Most Snowflake customers, misled by the
fact that a suspended warehouse can often be resumed in 1-2
seconds, end up selecting an aggressively small auto suspension
period, say 3 minutes or even less. The reason why such a small value
can have a drastic impact on performance, and thereby cost, is that
whenever a warehouse is suspended its entire cache is dropped! This
means even if the warehouse is resumed after 1-2 seconds, the
subsequent queries may take significantly longer simply because they
now have to read data from cold storage (e.g., S3) rather than local
memory. Depending on your workload’s access pattern and working

set, it may take a while before the relevant data for the upcoming
queries is cached again. There is at least one order of magnitude of
performance difference between processing a query on cached data
versus cold data. Choosing an optimal auto suspend interval requires

https://en.wikipedia.org/wiki/Working_set
https://en.wikipedia.org/wiki/Working_set

analyzing the average gap between your subsequent queries across
various applications and users. Strike a balance between an
exceedingly large interval versus an overly aggressive parameter.

● Make sure you always have some resource monitors in place to avoid
unexpected credit usage. Snowflake allows you to monitor the credit
usage per day, week, month, or year, whereupon reaching a quota an
automated alert is sent or the corresponding warehouses are
automatically suspended. We recommend that you have multiple
monitors in place to ensure each department or application stays
within its allotted credit budget for the month. You can also define a
smaller daily quota to prevent extreme mistakes. For instance, if a
department is meant to spend no more than 3000 credits a month, it is
a good idea to also define a lower budget, say 500 credits, for their
daily usage. You should not set the daily limit too small, say
3000/30=100, to accommodate natural workload fluctuations. If you do
not have any daily monitors in place, then a user mistakenly starting a
massive warehouse without suspending it or an application bug
issuing continuous queries may quickly burn through all your credits
for the month. Unfortunately, you cannot define quotas on a per-user
basis, but in its most granular form, you can define them on a
per-warehouse basis.

Keebo’sAutomatedApproach

While manual optimizations are most effective for small workloads and
organizations where there are fewer users and queries, they are not scalable
or effective for dealing with larger workloads. Manual optimizations are
time-consuming, hard to implement, and sub-optimal for several reasons
(as explained earlier). In this section, we will introduce Keebo’s automated
approach to cost and performance optimization.

What IsKeebo?
Keebo is a turn-key data-learning platform that sits invisibly between the
data warehouse and the users and automatically optimizes the data
warehouse, speeding up analytical queries by one or two orders of
magnitude and/or drastically reducing compute costs. Keebo is not a data
warehouse but rather a platform-independent warehouse optimizer, which
means it can accelerate or reduce the cost of existing data warehouses/lakes
and can support any BI tool or existing application. Keebo is also a
transparent drop-in solution. It does not require any data migrations or any
modifications to existing tools or applications.

● Automating a Tedious Process. Keebo learns the query patterns
and analyzes the underlying data automatically, without the need for
any configurations or hints from users or administrators. It also detects
data updates and reacts to changes in the workload automatically. In
other words, Keebo is a fully automated turn-key solution, freeing up
hundreds of hours of engineering time spent on tedious performance
optimization tasks.

● Reducing Costs. Through a suite of fully automated optimization
algorithms, Keebo drastically reduces the computational costs of the
underlying data warehouse. Keebo enables organizations and data
teams to accomplish more with fewer resources.

● Improving User Experience and Productivity. Instead of your
customers and users waiting minutes to see their query or dashboard
results, Keebo delivers an answer to their queries or loads their
dashboards in 2 seconds or less. Not only does a 2-second response
time drastically improve productivity and user experience, but it also
lowers the barrier for users who are less technical to create their own
queries and dashboards, increasing organizational adoption of
data-driven insights.

Keebo’sArchitecture

Keebo performs its operations on top of your existing data warehouse while
appearing as a data warehouse from the client’s perspective to avoid the
need for any modifications to your existing applications.

Keebo provides the native interface of popular databases (e.g., Postgres,
Snowflake, Redshift). Thus, any client, application, or BI tool that connects to
those databases can also connect to Keebo. In other words, customers do not
need to install any custom drivers to use Keebo.

HowtouseKeebo?

Step 1:Connect Keebo!

Keebo is a turn-key SaaS solution, which means you can sign up and
connect it to your data warehouse with just a few clicks. Keebo can connect
to any data warehouse. If, in addition to reducing your compute costs, you
also want to accelerate your queries, you can route your queries through
Keebo to your data warehouse. You can do that by connecting your existing
BI or other applications to Keebo using the vendor’s own driver, eliminating
the need for any migrations. This means, apart from a change of IP address,
the BI or application thinks it is still connecting to the underlying data
warehouse, and the data warehouse thinks the queries are coming directly
from the BI or user application. In other words, Keebo is a drop-in solution
compatible with today’s BI tools and data warehouses without requiring any
data migration or changing a single line of code in existing tools and
applications.

You do not have to connect all your applications to Keebo. You can choose
which applications, users, or dashboards need to be accelerated and only

connect those to Keebo. Even if you do not connect any of your applications
to Keebo, you can still connect Keebo to your data warehouse to optimize its
performance and reduce its compute costs.

Step 2: Let Keebo automatically learn and optimize
yourworkload

Once Keebo connects to your data warehouse, it automatically starts to learn
its “smart models” by analyzing your workload: warehouse settings, database
schema, data distribution, and query patterns. This process is called Data
Learning, which considers many factors before deciding which optimizations
to use:

1) Your data distribution. For example, it identifies columns with high or
low cardinality, their ranges, whether they have skewed distribution or
not, as well as the correlations among them.

2) Your query distribution. For example, Keebo’s Data Learning analyzes
your past query logs to identify common join patterns, grouping
conditions, or popular filters. It also takes the frequency of each pattern
into account and observes how they change over time.

3) Your warehouse settings and past performance. Keebo analyzes the
size and parameters of your data warehouse, as well as past query
latencies to determine the most effective optimizations.

Keebo uses a fully automated process and does not require any assistance
or manual intervention from users in determining and applying its
optimizations.

To avoid confusing your users and existing applications, Keebo never
modifies your existing database schema. All schema changes, if needed, are

performed under a separate schema, specifically created for Keebo’s own
operation, which is then used to answer Keebo’s rewritten (i.e., optimized)
queries.

Keebo continuously monitors the cost and performance of the incoming
queries and adjusts its optimizations accordingly to account for any changes
in the workload. Optimizations that are no longer beneficial are
automatically retired, and new ones are created as needed to
accommodate the additional load, new query patterns, or changes to the
underlying distribution of the customer data.

Step3: Enjoycosts savingsandacceleration

Within days, you should see a drastic reduction of your compute costs (if you
use a cloud data warehouse, such as Snowflake) and/or significant
acceleration of your queries. Keebo’s portal reports KPIs on both cost and
performance metrics so you can monitor your RoI and automated
optimizations performed by Keebo.

Get InTouch
To learn more about Keebo or a free trial contact us at
info@keebo.ai or visit https://keebo.ai

